Teoría cinética de los gases


La teoría cinética de los gases es una teoría física y química que explica el comportamiento y propiedades macroscópicas de los gases (Ley de los gases ideales), a partir de una descripción estadística de los procesos moleculares microscópicos. La teoría cinética se desarrolló con base en los estudios de físicos como Daniel Bernoulli en el siglo XVIII, Ludwig Boltzmann y James Clerk Maxwell a finales del siglo XIX.

Esta rama de la física describe las propiedades térmicas de los gases. Estos sistemas contienen números enormes de átomos o moléculas, y la única forma razonable de comprender sus propiedades térmicas con base en la mecánica molecular, es encontrar determinadas cantidades dinámicas de tipo promedio y relacionar las propiedades físicas observadas del sistema con estas propiedades dinámicas moleculares en promedio. Las técnicas para relacionar el comportamiento macroscópico global de los sistemas materiales con el comportamiento promedio de sus componentes moleculares constituyen la mecánica estadística.
Aproximadamente en el 50 a.C. el filósofo romano Lucretius propuso que los cuerpos macroscópicos, aparentemente estáticos, estaban compuestas a pequeña escala de átomos que se movían rápidamente despidiéndose unos de otros.  Este punto de vista atomista epicúreo fue raramente considerado en siglos posteriores, cuando las ideas aristotélicas eran las dominantes.

En 1738 Daniel Bernoulli publicó la obra Hydrodynamica, sentando las bases de la teoría cinética de los gases y planteando los argumentos, que todavía se utilizan hoy en día, de que los gases se componen de un gran número de moléculas que se mueven en todas las direcciones, que su impacto en una superficie causa la presión del gas que sentimos, y que lo que se experimenta en forma de calor es simplemente la energía cinética de su movimiento. La teoría no fue aceptada de inmediato, en parte debido a que la conservación de la energía todavía no se había establecido y a que los físicos no sabían cómo las colisiones entre moléculas podrían ser perfectamente elásticas. 

Otros pioneros de la teoría cinética (no considerados por sus contemporáneos) fueron Mikhail Lomonosov (1747),3 Georges-Louis Le Sage (ca. 1780, publicado en 1818),4 John Herapath (1816)5 y John James Waterston (1843),6 que conectaron sus investigaciones con el desarrollo de las explicaciones mecánicas de la gravitación. En 1856, August Krönig (probablemente después de leer un artículo de Waterston) creó un modelo cinético simple de gas, que sólo consideraba el movimiento de traslación de las partículas.

En 1857 Rudolf Clausius, según sus propias palabras independientemente de Krönig, desarrolló una versión de la teoría similar, pero mucho más sofisticada, que incluía no solo movimientos moleculares translacionales, como Kronig, si no también rotacionales y vibracionales. En este mismo trabajo introdujo el concepto de camino libre medio de una partícula.7 En 1859, después de leer un artículo de Clausius, James Clerk Maxwell formuló la distribución de Maxwell de las velocidades moleculares, lo que le dio la proporción de moléculas que tienen una determinada velocidad en un rango específico. Esta fue la primera ley estadística en la física.8 En su artículo de trece páginas de 1873 , «Moléculas», Maxwell dice: «se nos dice que un 'átomo' es un punto material, investido y rodeado de 'fuerzas potenciales' y que cuando 'moléculas volantes' chocan contra un cuerpo sólido en sucesión constante esto provoca lo que se llama presión del aire y otros gases».

En 1871, Ludwig Boltzmann generalizó los logros de Maxwell y formuló la distribución de Maxwell-Boltzmann. También afirmó por primera vez la conexión logarítmica entre la entropía y la probabilidad.

En el comienzo del siglo XX, sin embargo, muchos físicos empezaron a considerar que los átomos eran construcciones puramente hipotéticas, en lugar de objetos reales. Un importante punto de inflexión fueron los artículos sobre el movimiento browniano de Albert Einstein (1905)10 y Marian Smoluchowski (1906), que lograron hacer ciertas predicciones cuantitativas precisas basándose en la teoría cinética.
Propiedad, definición:

Son aquellas propiedades distintivas de las sustancias que se observan cuando reaccionan, es decir, cuando se rompen y/o se forman enlaces químicos entre los átomos, formándose con la misma materia sustancias nuevas distintas de las originales.

Las propiedades químicas se manifiestan en los procesos químicos (reacciones químicas), mientras que las propiedades propiamente llamadas propiedades físicas, se manifiestan en los procesos físicos, como el cambio de estado, la deformación, el desplazamiento, etc.

Ejemplos de propiedades químicas: - corrosividad de ácidos - poder calorífico o energía calórica - acidez - reactividad



Unidades

Presión
La presión  es una magnitud física que mide la proyección de la fuerza en dirección perpendicular por unidad de superficie, y sirve para caracterizar cómo se aplica una determinada fuerza resultante sobre una línea. En el Sistema Internacional de Unidades la presión se mide en una unidad derivada que se denomina pascal (Pa) que es equivalente a una fuerza total de un newton (N) actuando uniformemente en un metro cuadrado (m²). En el Sistema Inglés la presión se mide en libra por pulgada cuadrada (pound per square inch o psi) que es equivalente a una fuerza total de una libra actuando en una pulgada cuadrada.
La presión es la magnitud escalar que relaciona la fuerza con la superficie sobre la cual actúa, es decir, equivale a la fuerza que actúa sobre la superficie. 
En determinadas aplicaciones la presión se mide no como la presión absoluta sino como la presión por encima de la presión atmosférica, denominándose presión relativa, presión normal, presión de gauge o presión manométrica.


Consecuentemente, la presión absoluta es la presión atmosférica (Pa) más la presión manométrica (Pm) (presión que se mide con el manómetro).
En un fluido en movimiento la presión hidrostática puede diferir de la llamada presión hidrodinámica por lo que debe especificarse a cual de las dos se está refiriendo una cierta medida de presión.

En el marco de la teoría cinética la presión de un gas es explicada como el resultado macroscópico de las fuerzas implicadas por las colisiones de las moléculas del gas con las paredes del contenedor. La presión puede definirse por lo tanto haciendo referencia a las propiedades microscópicas del gas:


Para un gas ideal con N moléculas, cada una de masa m y moviéndose con una velocidad aleatoria promedio vrms contenido en un volumen cúbico V las partículas del gas impactan con las paredes del recipiente de una manera que puede calcularse de manera estadística intercambiando momento lineal con las paredes en cada choque y efectuando una fuerza neta por unidad de área que es la presión ejercida por el gas sobre la superficie sólida.
Propiedades de la presión en un medio fluido

Manómetro.
La fuerza asociada a la presión en un fluido ordinario en reposo se dirige siempre hacia el exterior del fluido, por lo que debido al principio de acción y reacción, resulta en una compresión para el fluido, jamás una tracción.
La superficie libre de un líquido en reposo (y situado en un campo gravitatorio constante) es siempre horizontal. Eso es cierto solo en la superficie de la Tierra y a simple vista, debido a la acción de la gravedad constante. Si no hay acciones gravitatorias, la superficie de un fluido es esférica y, por tanto, no horizontal.
En los fluidos en reposo, un punto cualquiera de una masa líquida está sometida a una presión que es función únicamente de la profundidad a la que se encuentra el punto. Otro punto a la misma profundidad, tendrá la misma presión. A la superficie imaginaria que pasa por ambos puntos se llama superficie equipotencial de presión o superficie isobárica.


Volumen

El volumen es una magnitud métrica de tipo escalar definida como la extensión en tres dimensiones de una región del espacio. Es una magnitud derivada de la longitud, ya que se halla multiplicando la longitud, el ancho y la altura. Matemáticamente el volumen es definible no sólo en cualquier espacio euclídeo, sino también en otro tipo de espacios métricos que incluyen por ejemplo a las variedades de Riemann.

Desde un punto de vista físico, los cuerpos materiales ocupan un volumen por el hecho de ser extensos, fenómeno que se debe al principio de exclusión de Pauli.

La unidad de medida de volumen en el Sistema Internacional de Unidades es el metro cúbico. Para medir la capacidad se utiliza el litro. Por razones históricas, existen unidades separadas para ambas, sin embargo están relacionadas por la equivalencia entre el litro y el decímetro cúbico:

1 dm3 = 1 litro = 0,001 m3 = 1000 cm3.

Temperatura

La temperatura es una magnitud referida a las nociones comunes de calor medible mediante un termómetro. En física, se define como una magnitud escalar relacionada con la energía interna de un sistema termodinámico, definida por el principio cero de la termodinámica. Más específicamente, está relacionada directamente con la parte de la energía interna conocida como «energía cinética», que es la energía asociada a los movimientos de las partículas del sistema, sea en un sentido traslacional, rotacional, o en forma de vibraciones. A medida que sea mayor la energía cinética de un sistema, se observa que éste se encuentra más «caliente»; es decir, que su temperatura es mayor.

En el caso de un sólido, los movimientos en cuestión resultan ser las vibraciones de las partículas en sus sitios dentro del sólido. En el caso de un gas ideal monoatómico se trata de los movimientos traslacionales de sus partículas (para los gases multiatómicos los movimientos rotacional y vibracional deben tomarse en cuenta también).

El desarrollo de técnicas para la medición de la temperatura ha pasado por un largo proceso histórico, ya que es necesario darle un valor numérico a una idea intuitiva como es lo frío o lo caliente.

Multitud de propiedades fisicoquímicas de los materiales o las sustancias varían en función de la temperatura a la que se encuentren, como por ejemplo su estado (sólido, líquido, gaseoso, plasma), su volumen, la solubilidad, la presión de vapor, su color o la conductividad eléctrica. Así mismo es uno de los factores que influyen en la velocidad a la que tienen lugar las reacciones químicas.

La temperatura se mide con termómetros, los cuales pueden ser calibrados de acuerdo a una multitud de escalas que dan lugar a unidades de medición de la temperatura. En el Sistema Internacional de Unidades, la unidad de temperatura es el kelvin (K), y la escala correspondiente es la escala Kelvin o escala absoluta, que asocia el valor «cero kelvin» (0 K) al «cero absoluto», y se gradúa con un tamaño de grado igual al del grado Celsius. Sin embargo, fuera del ámbito científico el uso de otras escalas de temperatura es común. La escala más extendida es la escala Celsius, llamada «centígrada»; y, en mucha menor medida, y prácticamente solo en los Estados Unidos, la escala Fahrenheit. También se usa a veces la escala Rankine (°R) que establece su punto de referencia en el mismo punto de la escala Kelvin, el cero absoluto, pero con un tamaño de grado igual al de la Fahrenheit, y es usada únicamente en Estados Unidos, y solo en algunos campos de la ingeniería. Sin embargo, debería utilizarse el Julio puesto que la temperatura no es más que una medida de la energía cinética media de un sistema, de esta manera podríamos prescindir de la constante de Boltzmann.